

 Navigation

 	
 index

 	
 next |

 	Perl XML::LibXML by Example documentation

Perl XML::LibXML by Example

The XML::LibXML [https://metacpan.org/release/XML-LibXML] Perl module is a
wrapper around the libxml2 [http://www.xmlsoft.org/] parser library which is
written in C. This tutorial uses example code to introduce the features of
XML::LibXML and the ways in which you can use the module. The example
scripts and XML documents are available as a ZIP file download.

Get started with a basic example or jump directly to a specific
topic using the Table of Contents.

	A Basic Example
	Other XML sources

	A more complex example

	Accessing attributes

	Attributes via tied hash

	Parsing Errors

	XPath Expressions
	XPath Functions

	The Document Object Model
	The ‘Document’ object

	‘Element’ objects

	‘Text’ objects

	‘Attr’ objects

	‘NodeList’ objects

	Modifying the DOM

	Creating a new Document

	Working with XML Namespaces

	Working With Large Documents
	The Reader Loop

	Bring Back the DOM

	Error Handling

	Working With Patterns

	Working with HTML
	Querying HTML with XPath

	Matching class names

	Using CSS-style selectors

	Installing XML::LibXML
	Installing on Windows

	Installing on Linux

	Installing on Mac OS X

Alternate Formats

The primary target for this project is the set of HTML pages. Alternate
formats are available but may be missing some elements or features which are
present in the HTML:

	.pdf version

	.epub version

Corrections and Updates

If you spot errors in the text of this document, please raise an issue [https://github.com/grantm/perl-libxml-by-example/issues] on GitHub. You are
also welcome to fork the project [https://github.com/grantm/perl-libxml-by-example], commit a fix and raise a
pull request.

If you find this document useful please link to it from your blogs, tweets,
Stack Overflow answers etc. The canonical URL for linking is
http://grantm.github.io/perl-libxml-by-example/.

Contributors

In alphabetical order:

	Brandon Youngdale

	Grant McLean

 Copyright 2016-2018, Grant McLean.
 Last updated on 2020-01-29.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Perl XML::LibXML by Example documentation

A Basic Example

The first thing you’ll need is an XML document. The example programs in this
section will use the playlist.xml
file shown below. This file contains details of five different movies:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

	<playlist>
 <movie id="tt0112384">
 <title>Apollo 13</title>
 <director>Ron Howard</director>
 <release-date>1995-06-30</release-date>
 <mpaa-rating>PG</mpaa-rating>
 <running-time>140</running-time>
 <genre>adventure</genre>
 <genre>drama</genre>
 <cast>
 <person name="Tom Hanks" role="Jim Lovell" />
 <person name="Bill Paxton" role="Fred Haise" />
 <person name="Kevin Bacon" role="Jack Swigert" />
 <person name="Gary Sinise" role="Ken Mattingly" />
 <person name="Ed Harris" role="Gene Kranz" />
 </cast>
 <imdb-info url="http://www.imdb.com/title/tt0112384/">
 <synopsis>
 NASA must devise a strategy to return Apollo 13 to Earth safely
 after the spacecraft undergoes massive internal damage putting
 the lives of the three astronauts on board in jeopardy.
 </synopsis>
 <score>7.6</score>
 </imdb-info>
 </movie>
 <movie id="tt0307479">
 <title>Solaris</title>
 <director>Steven Soderbergh</director>
 <release-date>2002-11-27</release-date>
 <mpaa-rating>PG-13</mpaa-rating>
 <running-time>99</running-time>
 <genre>drama</genre>
 <genre>mystery</genre>
 <genre>romance</genre>
 <cast>
 <person name="George Clooney" role="Chris Kelvin" />
 <person name="Natascha McElhone" role="Rheya" />
 <person name="Ulrich Tukur" role="Gibarian" />
 </cast>
 <imdb-info url="http://www.imdb.com/title/tt0307479/">
 <synopsis>
 A troubled psychologist is sent to investigate the crew of an
 isolated research station orbiting a bizarre planet.
 </synopsis>
 <score>6.2</score>
 </imdb-info>
 </movie>
 <movie id="tt1731141">
 <title>Ender's Game</title>
 <director>Gavin Hood</director>
 <release-date>2013-11-01</release-date>
 <mpaa-rating>PG-13</mpaa-rating>
 <running-time>114</running-time>
 <genre>action</genre>
 <genre>scifi</genre>
 <cast>
 <person name="Asa Butterfield" role="Ender Wiggin" />
 <person name="Harrison Ford" role="Colonel Graff" />
 <person name="Hailee Steinfeld" role="Petra Arkanian" />
 </cast>
 <imdb-info url="http://www.imdb.com/title/tt1731141/">
 <synopsis>
 Young Ender Wiggin is recruited by the International Military
 to lead the fight against the Formics, a genocidal alien race
 which nearly annihilated the human race in a previous invasion.
 </synopsis>
 <score>6.7</score>
 </imdb-info>
 </movie>
 <movie id="tt0816692">
 <title>Interstellar</title>
 <director>Christopher Nolan</director>
 <release-date>2014-11-07</release-date>
 <mpaa-rating>PG-13</mpaa-rating>
 <running-time>169</running-time>
 <genre>adventure</genre>
 <genre>drama</genre>
 <genre>scifi</genre>
 <cast>
 <person name="Matthew McConaughey" role="Cooper" />
 <person name="Anne Hathaway" role="Brand" />
 <person name="Jessica Chastain" role="Murph" />
 <person name="Michael Caine" role="Professor Brand" />
 </cast>
 <imdb-info url="http://www.imdb.com/title/tt0816692/">
 <synopsis>
 A team of explorers travel through a wormhole in space in an
 attempt to ensure humanity's survival.
 </synopsis>
 <score>8.6</score>
 </imdb-info>
 </movie>
 <movie id="tt3659388">
 <title>The Martian</title>
 <director>Ridley Scott</director>
 <release-date>2015-10-02</release-date>
 <mpaa-rating>PG-13</mpaa-rating>
 <running-time>144</running-time>
 <genre>adventure</genre>
 <genre>drama</genre>
 <genre>scifi</genre>
 <cast>
 <person name="Matt Damon" role="Mark Watney" />
 <person name="Jessica Chastain" role="Melissa Lewis" />
 <person name="Kristen Wiig" role="Annie Montrose" />
 </cast>
 <imdb-info url="http://www.imdb.com/title/tt3659388/">
 <synopsis>
 During a manned mission to Mars, Astronaut Mark Watney is
 presumed dead after a fierce storm and left behind by his crew.
 But Watney has survived and finds himself stranded and alone on
 the hostile planet. With only meager supplies, he must draw upon
 his ingenuity, wit and spirit to subsist and find a way to
 signal to Earth that he is alive.
 </synopsis>
 <score>8.1</score>
 </imdb-info>
 </movie>
</playlist>

Note

Although this XML document contains details which came from the fabulous
IMDb.com [http://www.imdb.com/] web site, the file structure was created
specifically for this example and does not represent an actual API for
querying movie details.

Once you have the sample XML document, you can use this script to extract and print the title of each movie,
in the order they appear in the XML:

#!/usr/bin/perl

use 5.010;
use strict;
use warnings;

use XML::LibXML;

my $filename = 'playlist.xml';

my $dom = XML::LibXML->load_xml(location => $filename);

foreach my $title ($dom->findnodes('/playlist/movie/title')) {
 say $title->to_literal();
}

and will produce the following output:

Apollo 13
Solaris
Ender's Game
Interstellar
The Martian

Is XML::LibXML installed?

If you try running this example script but you don’t have the
XML::LibXML module installed on your system, then you’ll get an error
like this:

Can’t locate XML/LibXML.pm in @INC ... at ./010-list-titles.pl line 7.

If you do get this error, then refer to Installing XML::LibXML for help on
installing XML::LibXML.

If we break the example down line-by-line we see that after a standard
boilerplate section, the script loads the XML::LibXML module:

use XML::LibXML;

Next, the load_xml() class method is called to parse the XML file and
return a document object:

my $dom = XML::LibXML->load_xml(location => $filename);

The $dom variable now contains an object representing all the elements of
the XML document arranged in a tree structure known as a
Document Object Model or ‘DOM’.

Finally we get to the guts of the script where the findnodes() method is
called to search the DOM for the elements we’re interested in and a foreach
loop is used to iterate through the matching elements:

foreach my $title ($dom->findnodes('/playlist/movie/title')) {
 say $title->to_literal();
}

The findnodes() method takes one argument - an XPath expression. This
is a string describing the location and characteristics of the elements we want
to find. XPath is a query language and the way we use it to select elements
from the DOM is similar to the way we use SQL to select records from a
relational database. The next section (XPath Expressions) will include examples of
more complex queries.

The findnodes() method returns a list of objects from the DOM that match
the XPath expression. Each time through the loop, $title will contain an
object representing the next matching element. This object provides a number
of properties and methods that you can use to access the element and its
attributes, as well as any text content and ‘child’ elements.

Inside the loop, this example simply calls the to_literal() method to get
the text content of the element. The string returned by to_literal() will
not include any of the attributes but will include the text content of any
child elements.

Other XML sources

The first example script called XML::LibXML->load_xml() with the
location argument set to the name of a file. The location argument
also accepts a URL:

$dom = XML::LibXML->load_xml(location => 'http://techcrunch.com/feed/');

Note

Not all versions of libxml2 can retrieve documents over SSL/TLS. So if
the URL is an ‘https’ URL (or if it redirects to one), you may need to use
a module like LWP [https://metacpan.org/release/libwww-perl] to retrieve
the document and pass the response body to the XML parser as a string as
shown below.

If you have the XML in a string, instead of location, use string:

$dom = XML::LibXML->load_xml(string => $xml_string);

Or, you can provide a Perl file handle to parse from an open file or socket,
using IO:

$dom = XML::LibXML->load_xml(IO => $fh);

When providing a string or a file handle, it’s crucial that you do not
decode the bytes of the source data (for example by using ':utf8' when
opening a file). The underlying libxml2 library is written in C to decode
bytes and does not understand Perl’s character strings. If you have assembled
your XML document by concatenating Perl character strings, you will need to
encode it to a byte string (for example using Encode::encode_utf8()) and
then pass the byte string to the parser.

If you have enabled UTF-8 globally with something like this in your script:

use open ':encoding(utf8)';

Then you’ll need to turn off the encoding IO layers for any file handle
that you pass to XML::LibXML:

open my $fh, '<', $filename;
binmode $fh, ':raw';
$dom = XML::LibXML->load_xml(IO => $fh);

A more complex example

Now let’s look at a slightly more complex example. This script takes the same XML input and extracts more
details from each <movie> element:

#!/usr/bin/perl

use 5.010;
use strict;
use warnings;

use XML::LibXML;

my $filename = 'playlist.xml';

my $dom = XML::LibXML->load_xml(location => $filename);

foreach my $movie ($dom->findnodes('//movie')) {
 say 'Title: ', $movie->findvalue('./title');
 say 'Director: ', $movie->findvalue('./director');
 say 'Rating: ', $movie->findvalue('./mpaa-rating');
 say 'Duration: ', $movie->findvalue('./running-time'), " minutes";
 my $cast = join ', ', map {
 $_->to_literal();
 } $movie->findnodes('./cast/person/@name');
 say 'Starring: ', $cast;
 say "";
}

and will produce the following output:

Title: Apollo 13
Director: Ron Howard
Rating: PG
Duration: 140 minutes
Starring: Tom Hanks, Bill Paxton, Kevin Bacon, Gary Sinise, Ed Harris

Title: Solaris
Director: Steven Soderbergh
Rating: PG-13
Duration: 99 minutes
Starring: George Clooney, Natascha McElhone, Ulrich Tukur

Title: Ender's Game
Director: Gavin Hood
Rating: PG-13
Duration: 114 minutes
Starring: Asa Butterfield, Harrison Ford, Hailee Steinfeld

Title: Interstellar
Director: Christopher Nolan
Rating: PG-13
Duration: 169 minutes
Starring: Matthew McConaughey, Anne Hathaway, Jessica Chastain, Michael Caine

Title: The Martian
Director: Ridley Scott
Rating: PG-13
Duration: 144 minutes
Starring: Matt Damon, Jessica Chastain, Kristen Wiig

Let’s compare the main loop of the first script:

foreach my $title ($dom->findnodes('/playlist/movie/title')) {
 say $title->to_literal();
}

with the main loop of the second script:

foreach my $movie ($dom->findnodes('//movie')) {
 say 'Title: ', $movie->findvalue('./title');
 say 'Director: ', $movie->findvalue('./director');
 say 'Rating: ', $movie->findvalue('./mpaa-rating');
 say 'Duration: ', $movie->findvalue('./running-time'), " minutes";
 my $cast = join ', ', map {
 $_->to_literal();
 } $movie->findnodes('./cast/person/@name');
 say 'Starring: ', $cast;
 say "";
}

The structure of the main loop is very similar but the XPath expression
passed to findnodes() is different in each case:

	'/playlist/movie/title'

	
Will match every <title> element which is the child of ...

a <movie> element which is the child of ...

a <playlist> element which is ...

the top-level element in the document.

Or, to phrase it a different way, the search will start at the top of the
document and look for a <playlist> element; if one is found, the search
will continue for child <movie> elements; and for each one that is
found the search will continue for child <title> elements.

	'//movie'

	Will match every <movie> element at any level of nesting.

In both cases, the XPath expression starts with a ‘/’ which means the search
will start at the the top of the document.

Inside the second script’s loop are a number of calls to findvalue(). This
is a handy shortcut method that is typically used when you expect the XPath
expression to match exactly one node. It combines the functionality of
findnodes() and to_literal() into a single method. So this code:

$movie->findvalue('./title');

is equivalent to:

$movie->findnodes('./title')->to_literal();

There are a couple of other interesting differences with the XPath searches in
the loop compared to previous examples. Firstly, the findvalue() method is
being called on $movie (which represents one <movie> element) rather
than on $dom (which represents the whole document). This means that the
$movie element is the context element. Secondly, the XPath expression
starts with a ‘.’ which means: start the search at the context element rather
than at the top of the document.

This second script illustrates a common pattern when working with XML::LibXML:

	find ‘interesting’ elements using an XPath query starting with ‘/’ or ‘//’

	iterate through those elements in a foreach loop

	get additional data from child elements using XPath queries starting with ‘.’

Accessing attributes

When listing cast members in the main loop of the script above, this code ...

 my $cast = join ', ', map {
 $_->to_literal();
 } $movie->findnodes('./cast/person/@name');
 say 'Starring: ', $cast;

is used to transform this XML ...

	1
2
3
4
5

	<cast>
 <person name="Matt Damon" role="Mark Watney" />
 <person name="Jessica Chastain" role="Melissa Lewis" />
 <person name="Kristen Wiig" role="Annie Montrose" />
</cast>

into this output:

Starring: Matt Damon, Jessica Chastain, Kristen Wiig

In an XPath expression, a name that starts with @ will match an attribute
rather than an element, so 'person/@name' refers to an attribute called
name on a <person> element. In this case, the call to
findnodes('./cast/person/@name') will return three DOM nodes representing
attribute values which are then transformed into plain strings using
to_literal(), as we’ve seen for element nodes, inside a map [http://perldoc.perl.org/functions/map.html] block.

Another approach is to select the element with XPath and then call a DOM
method on the element node to get the attribute value:

 my $cast = join ', ', map {
 $_->getAttribute('name');
 } $movie->findnodes('./cast/person');
 say 'Starring: ', $cast;

Attributes via tied hash

There’s a shortcut syntax you can use to make this even easier, simply treat
the element node as a hashref:

 my $cast = join ', ', map {
 $_->{name};
 } $movie->findnodes('./cast/person');
 say 'Starring: ', $cast;

You might be a bit wary of poking around directly inside the element object,
rather than using accessor methods. But don’t worry, that’s not what this
shortcut syntax is doing. Instead, every XML::LibXML::Element [https://metacpan.org/pod/XML::LibXML::Element] object returned from the
XPath query has been ‘tied’ [https://metacpan.org/pod/distribution/perl/pod/perltie.pod] using
XML::LibXML::AttributeHash [https://metacpan.org/pod/XML::LibXML::AttributeHash] so that hash lookups
‘inside’ the object actually get proxied to getAttribute() method calls.

This technique is less efficient than calling getAttribute() directly but
it is very convenient when you want to access more than one attribute of an
element or when you want to interpolate an attribute value into a string:

 my $cast = join "\n", map {
 " * $_->{name} (as $_->{role})";
 } $movie->findnodes('./cast/person');
 say "\nStarring:\n", $cast;

Which will produce this output:

Starring:
 * Matt Damon (as Mark Watney)
 * Jessica Chastain (as Melissa Lewis)
 * Kristen Wiig (as Annie Montrose)

Note

Overloading ‘Element’ nodes to support tied hash access to attribute values
was added in version 1.91 of XML::LibXML. If the examples above don’t work
for you then it may be because you have a very old version installed.

Parsing Errors

One of the advantages of XML is that it has a few strict rules that every
document must comply with to be considered “well-formed”. If a document is not
well-formed, it should be rejected in its entirety and no part of the XML
document content should be used. Examples of things that would cause a
document to be not well-formed include:

	missing or mismatched closing tag

	missing or mismatched quotes around attribute values

	whitespace before the initial XML declaration section

	byte sequences that do not match the document’s declared character encoding

	any non-whitespace characters after the closing tag for the first top-level
element

Like pretty much all XML parser modules, libxml will throw an exception
if it encounters any violations of these rules. Since the whole of the XML
document is processed when load_xml is called, an error at any point in
the document will cause an exception to be raised.

If you wish to handle exceptions gracefully use must use an eval block or
one of the “try/catch” syntax extension modules to catch the error. For
example, this document contains an error:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	<?xml version='1.0' encoding='UTF-8' standalone="yes" ?>
<book edition="2">
 <title>Training Your Pet Ferret</title>
 <authors>
 <author>Gerry Bucsis</author>
 <author>Barbara Somerville</author>
 </authors>
 <isbn>9780764142239</isnb>
 <dimensions width="162.56mm" height="195.58mm" depth="10.16mm" pages="96" />
</book>

This script will attempt to parse the bad input:

#my $filename = 'book.xml';
my $filename = 'book-borkened.xml';

my $dom = eval {
 XML::LibXML->load_xml(location => $filename);
};
if($@) {
 # Log failure and exit
 print "Error parsing '$filename':\n$@";
 exit 0;
}

foreach my $author ($dom->findnodes('//author')) {
 say $author->to_literal();

and will instead produce this output:

Error parsing 'book-borkened.xml':
book-borkened.xml:8: parser error : Opening and ending tag mismatch: isbn line 8 and isnb
 <isbn>9780764142239</isnb>
 ^

Note that although the script is only looking for <author> elements and the
error in the <isbn> element comes after all the <author> elements, an
exception is still raised by the load_xml call inside the eval block,
before the DOM has been fully constructed.

That’s it for the basic examples. The next topic will look more closely at
XPath expressions.

 Copyright 2016-2018, Grant McLean.
 Last updated on 2020-01-29.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Perl XML::LibXML by Example documentation

XPath Expressions

As you saw in the basic examples section, the findnodes()
method takes an XPath expression and finds nodes in the DOM that
match the expression. There are two ways to call calling the findnodes()
method:

	on the object representing the whole document, or

	on an element from the DOM - the element on which you call the method is
called the context element

If your XPath expression starts with a ‘/’ then the search will start at
top-most element in the document - even if you call findnodes() on a
different context element.

Start your XPath expression with ‘.’ to search down through the children of the
context element.

The remainder of this section simply includes examples of XPath expressions and
descriptions of what they match.

Note

You can try out different XPath expressions in the XPath sandbox [http://grantm.github.io/perl-libxml-by-example/_static/xpath-sandbox/xpath-sandbox.html].
The sandbox doesn’t actually use Perl or libxml, it simply uses Javascript
to access the XPath engine built into your browser. However, the
expression matching should work just as it would in your Perl scripts.

/playlistTry it!
Match the top-most element of the document if (and only if) it is a
<playlist> element.

//titleTry it!
Match every <title> element in the document.

//movie/titleTry it!
Match every <title> element that is the direct child of a <movie>
element.

./title

Match every <title> element that is the direct child of the context
element, e.g.:

foreach my $movie ($dom->findnodes('//movie')) {
 say 'Title: ', $movie->findvalue('./title');
}

//title/..Try it!
Match any element which is the parent of a <title> element.

/*Try it!
Match the top-most element of the document regardless of the element name.

//person/@roleTry it!
Match the attribute named role on every <person> element.

//person/@*Try it!
Match every attribute on every <person> element.

//person[@role]Try it!
Match every <person> element that has an attribute named role.

//*[@url]Try it!
Match every element that has an attribute named url.

//*[@*]Try it!
Match every element that has an attribute of any name.

/playlist//*[not(@*)]Try it!
Match every element that is a descendant of the top-level <playlist>
element and which does not have any attributes.

//movie[@id="tt0307479"]Try it!
Match every <movie> element that has an attribute named id with the
value tt0307479.

//movie[not(@id="tt0307479")]Try it!
Match every <movie> element that does not have an attribute named
id with the value tt0307479 (including elements that do not have
an id attribute at all).

//*[@id="tt0307479"]Try it!
Match every element that has an attribute named id with the value
tt0307479.

//movie[@id="tt0307479"]//synopsisTry it!
Match every synopsis element within every <movie> element that has
an attribute named id with the value tt0307479.

//person[position()=2]Try it!
Match the second <person> element in each sequence of adjacent
<person> elements. Note that the first element in a sequence is at
position 1 not 0.

//person[2]Try it!
This is simply a shorthand form of the position()=2 expression above.

//person[position()<3]Try it!
Match the first two <person> elements in each sequence of adjacent
<person> elements.

//person[last()]Try it!
Match the last <person> element in each sequence of adjacent
<person> elements.

//cast[count(person)=3]Try it!
Match every <cast> element which contains exactly 3 <person>
elements.

//*[name()='genre']Try it!
Match every element with the name genre - exactly equivalent to
//genre.

//*[starts-with(name(), 'running')]Try it!
Match every element with a name starting with the word running.

//person[contains(@name, 'Matt')]Try it!
Match every <person> element that has an attribute named name
which contains the text Matt anywhere in the attribute value.

//person[contains(@name, 'matt')]Try it!
Same as above except for the casing of the text to match. Matching is
case-sensitive.

//person[not(contains(@name, 'e'))]Try it!
Match every <person> element that has an attribute named name
which does not contain the letter e anywhere in the attribute value.

//person[starts-with(@name, 'K')]Try it!
Match every <person> element that has an attribute named name with
a value that starts with the letter K.

//director/text()Try it!
Match every text node which is a direct child of a <director> element.

//cast/text()Try it!
Match every text node which is a direct child of a <cast> element.
You might imagine that this would not match anything, since in the sample
document the <cast> elements contain only <person> elements. But
if you look carefully, you’ll see that in between each <person> element
there is some whitespace - a newline after the preceding element and then
some spaces at the start of the next line. This whitespace is text and is
therefore matched.

//person[contains(@name,'Matt')]/parent::*Try it!
Match the parent of every <person> element which contains Matt in
the name attribute. (You could also use /.. for the parent). The
syntax parent::* means any element on the parent axis.

//person[contains(@name,'Matt')]/ancestor::movieTry it!
Match every <movie> element which is an ancestor of a <person>
element which contains Matt in the name attribute. The syntax
ancestor::* means any element on the ancestor axis.

//genre[text()='drama']/following-sibling::*Try it!
Match every element of any name, which is a sibling of a <genre>
element whose complete text content is drama and which follows that
element in document order.

//genre[text()='drama']/following-sibling::genreTry it!
Match every <genre> element, which is a sibling of a <genre>
element whose complete text content is drama and which follows that
element in document order.

//genre[text()='drama']/preceding-sibling::genreTry it!
Match every <genre> element, which is a sibling of a <genre>
element whose complete text content is drama and which comes before
that element in document order.

//movie[@id="tt0112384"]/following::titleTry it!
Match every <title> element, which comes after a <movie> element
with tt0112384 as the value of the id attribute. Note that ‘after’
means after the closing tag so a <title> element inside the matching
<movie> would not be included.

//movie[.//score/text() < 7.5]Try it!
Match every <movie> element which contains a <score> element with
text content numerically less than 7.5.

//movie[.//score/text() > 8.0]//synopsisTry it!
Match every <synopsis> element in every <movie> element which
contains a <score> element with text content numerically greater than
8.0.

//director or //genreTry it!
Match every element which is a <director> or a <genre>.

//person[contains(@name, 'Bill') and contains(@role, 'Fred')]Try it!
Match every <person> element which contains Bill in the name
attribute and contains Fred in the role attribute.

//person[@name='Kevin Bacon']/../person[@name!='Kevin Bacon']Try it!
Find every person who has played alongside Kevin Bacon. First find every
<person> element with a name attribute equal to Kevin Bacon. Then
find the parent of each matching element and look for its child
<person> elements with a name attribute which is not equal to Kevin
Bacon.

XPath Functions

Some of the examples above used XPath functions [https://developer.mozilla.org/en-US/docs/Web/XPath/Functions]. It’s worth
noting that the underlying libxml2 library only supports XPath version 1.0 and
there are no plans to support 2.0 [http://www.mail-archive.com/xml@gnome.org/msg04082.html].

XPath 1.0 does not include the lower-case() or upper-case() functions,
so nasty workarounds like this are required if you need case-insensitive
matching:

my $query = q{
 //person[
 contains(
 translate(
 @name,
 'ABCDEFGHIJKLMNOPQRSTUVWXZY',
 'abcdefghijklmnopqrstuvwxyz'
),
 'matt'
)
]
};

foreach my $person ($dom->findnodes($query)) {
 say "Person: $person->{name}";
}

Alternatively, you can use the Perl API to register custom XPath functions [https://metacpan.org/pod/distribution/XML-LibXML/lib/XML/LibXML/XPathContext.pod#Custom-XPath-functions].

 Copyright 2016-2018, Grant McLean.
 Last updated on 2020-01-29.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Perl XML::LibXML by Example documentation

The Document Object Model

The basic examples section introduced the findnodes() method
and XPath expressions for extracting parts of an XML document. For most
applications, that’s pretty much all you need, but sometimes it’s necessary to
use lower-level methods and to understand the relationships between different
parts of the document.

The XML::LibXML module implements Perl bindings for the W3C Document Object
Model [https://www.w3.org/TR/DOM-Level-3-Core/core.html]. The W3C DOM
defines object classes, properties and methods for querying and manipulating
the different parts of an XML (or HTML) document. In the Perl implementation,
object properties are exposed via accessor methods.

Let’s start our exploration of the DOM with a simple XML document which
describes a book [http://www.bookdepository.com/isbn/9780764142239] -
book.xml

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	<?xml version='1.0' encoding='UTF-8' standalone="yes" ?>
<book edition="2">
 <title>Training Your Pet Ferret</title>
 <authors>
 <author>Gerry Bucsis</author>
 <author>Barbara Somerville</author>
 </authors>
 <isbn>9780764142239</isbn>
 <dimensions width="162.56mm" height="195.58mm" depth="10.16mm" pages="96" />
</book>

When you ask XML::LibXML to parse the document, it creates an object to
represent each part of the document and assembles those objects into a
hierarchy as shown here:

[image: An XML document represented as a Document Object Model]
A simplified representation of the Document Object Model.

The source XML document has a <book> element which contains four other
elements: <title>, <authors>, <isbn> and <dimensions>. The
<authors> element in turn contains two <author> elements.

The hierarchy in the picture shows us that <book> has four “child”
elements. Similarly, <authors> has two child elements and one “parent”
element (<book>). Five of the elements have no child elements but four of
them do contain text content and one has some attributes.

The ‘Document’ object

When you parse a document with XML::LibXML the parser returns a ‘Document’
object - represented in yellow in the picture above. The reference
documentation for the XML::LibXML::Document [https://metacpan.org/pod/XML::LibXML::Document] class lists methods you can
use to interact with the document. The ‘Document’ class inherits from the
‘Node’ class so you’ll also need to refer to the docs for XML::LibXML::Node [https://metacpan.org/pod/XML::LibXML::Node] as well.

my $dom = XML::LibXML->load_xml(location => 'book.xml');

say '$dom is a ', ref($dom);
say '$dom->nodeName is: ', $dom->nodeName;

Output:

$dom is a XML::LibXML::Document
$dom->nodeName is: #document

The document object also provides methods you can use to extract information
from the XML declaration section - the very first line of the source XML,
which precedes the <book> element:

say 'XML Version is: ', $dom->version;
say 'Document encoding is: ', $dom->encoding;
my $is_or_not = $dom->standalone ? 'is' : 'is not';
say "Document $is_or_not standalone";

Output:

XML Version is: 1.0
Document encoding is: UTF-8
Document is standalone

You can serialise a whole DOM back out to XML by calling the toString()
method on the document object:

say "DOM as XML:\n", $dom->toString;

The document class also overrides the stringification operator, so if you
simply treat the object as a string and print it out you’ll also get the
serialised XML:

say "DOM as a string:\n", $dom;

‘Element’ objects

The blue boxes in the picture represent ‘Element’ nodes. The reference
documentation for the XML::LibXML::Element [https://metacpan.org/pod/XML::LibXML::Element] class lists a number of
methods, but like the ‘Document’ class, many more methods are inherited from
XML::LibXML::Node [https://metacpan.org/pod/XML::LibXML::Node].

Every XML document has one single top-level element known as the “document
element” that encloses all the other elements - in our example it’s the
<book> element. You can retrieve this element by calling the
documentElement() method on the document object and you can determine
what type of element it is by calling nodeName():

my $book = $dom->documentElement;
say '$book is a ', ref($book);
say '$book->nodeName is: ', $book->nodeName;

Output:

$book is a XML::LibXML::Element
$book->nodeName is: book

The <book> element has four child elements. You can use
getChildrenByTagName() to get a list of all the child elements with a
specific element name (this is not a recursive search, it only looks through
elements which are direct children):

my($isbn) = $book->getChildrenByTagName('isbn');
say '$isbn is a ', ref($isbn);
say '$isbn->nodeName is: ', $isbn->nodeName;
say '$isbn->to_literal returns: ', $isbn->to_literal;
say '$isbn stringifies to: ', $isbn;

Output:

$isbn is a XML::LibXML::Element
$isbn->nodeName is: isbn
$isbn->to_literal returns: 9780764142239
$isbn stringifies to: <isbn>9780764142239</isbn>

If you’re not looking for one specific type of element, you can get all the
children with childNodes():

my @children = $book->childNodes;
my $count = @children;
say "\$book has $count child nodes:";
my $i = 0;
foreach my $child (@children) {
 say $i++, ": is a ", ref($child), ', name = ', $child->nodeName;
}

We already know that <book> contains four child elements, so you may be
a little surprised to see childNodes() returns a list of nine nodes:

$book has 9 child nodes:
0: is a XML::LibXML::Text, name = #text
1: is a XML::LibXML::Element, name = title
2: is a XML::LibXML::Text, name = #text
3: is a XML::LibXML::Element, name = authors
4: is a XML::LibXML::Text, name = #text
5: is a XML::LibXML::Element, name = isbn
6: is a XML::LibXML::Text, name = #text
7: is a XML::LibXML::Element, name = dimensions
8: is a XML::LibXML::Text, name = #text

If you refer back to the source XML document, you can see that after the
<book> tag and before the <title> tag there is some whitespace: a
line-feed character followed by two spaces at the start of the next line:

	1
2

	<book edition="2">
 <title>Training Your Pet Ferret</title>

These strings of whitespace are represented in the DOM by ‘Text’ nodes, which
are children of the parent element. So a more accurate DOM diagram would
look like this:

[image: Document Object Model including whitespace-only text nodes]
Document Object Model including whitespace-only text nodes

If you want to filter child nodes by type, XML::LibXML provides a number of
constants which you can import when you load the module:

use XML::LibXML qw(:libxml);

And then you can compare $node->nodeType to these constants:

my @elements = grep { $_->nodeType == XML_ELEMENT_NODE } $book->childNodes;
$count = @elements;
say "\$book has $count child elements:";
$i = 0;
foreach my $child (@elements) {
 say $i++, ": is a ", ref($child), ', name = ', $child->nodeName;
}

Output:

$book has 4 child elements:
0: is a XML::LibXML::Element, name = title
1: is a XML::LibXML::Element, name = authors
2: is a XML::LibXML::Element, name = isbn
3: is a XML::LibXML::Element, name = dimensions

That technique is useful for the general case of filtering child nodes by type,
but if you simply want to exclude text nodes that contain only whitespace, you
can do that by specifying the no_blanks option when parsing the source
document. This causes libxml to discard those ‘blank’ text nodes rather
than adding them into the DOM:

my $dom = XML::LibXML->load_xml(location => 'book.xml', no_blanks => 1);

Output:

$book has 4 child nodes:
0: is a XML::LibXML::Element, name = title
1: is a XML::LibXML::Element, name = authors
2: is a XML::LibXML::Element, name = isbn
3: is a XML::LibXML::Element, name = dimensions

Blank text nodes are really only a problem if you use the low-level DOM methods
for walking through child nodes. You’ll generally find that it’s much easier
to just use findnodes() and XPath Expressions to select exactly the elements or
other nodes you want. If the blank nodes don’t match your selector then they
won’t be returned in the result set.

‘Text’ objects

The green boxes in the picture represent ‘Text’ nodes. The reference
documentation for the XML::LibXML::Text [https://metacpan.org/pod/XML::LibXML::Text] class lists a small number of
methods and many more are inherited from the Node class.

There are numerous ways to get the text string out of a Text object but it’s
important to be clear on whether you want the text as it appears in the XML
(including any entity escaping) or whether you want the plain text that the
source represents. Consider this tiny source document:

	1

	<item>Fish & Chips</item>

And these different methods for accessing the text:

my $item = $dom->documentElement;
my($text) = $item->childNodes();

say '$text is a ', ref($text);
say '$text->data = ', $text->data;
say '$text->nodeValue = ', $text->nodeValue;
say '$text->to_literal = ', $text->to_literal;
say '$text->toString = ', $text->toString;
say '$text as a string: ', $text;

Producing this output:

$text is a XML::LibXML::Text
$text->data = Fish & Chips
$text->nodeValue = Fish & Chips
$text->to_literal = Fish & Chips
$text->toString = Fish & Chips
$text as a string: Fish & Chips

The data() and nodeValue() methods are essentially aliases. The
to_literal() method produces the same output via a more complex route, but
has the advantage that you can call it on any object in the DOM.

The toString() method is really only useful for serialising a whole DOM or
a DOM fragment out to XML. Stringification is particularly handy when you just
want to print an object out for debugging purposes.

‘Attr’ objects

The red boxes in the picture represent attributes. You’re unlikely to ever
need to deal with attribute objects since it’s easier to get and set
attribute values by calling methods on an Element object and passing in plain
string values. An even easier approach is to use the tied hash interface that allows you to treat each element as if it were a
hashref and access attribute values via hash keys:

my $book = $dom->documentElement;
my($dim) = $book->getChildrenByTagName('dimensions');

say '$dim->getAttribute("width") = ', $dim->getAttribute("width");
say "\$dim->{width} = $dim->{width}";

Output:

$dim->getAttribute("width") = 162.56mm
$dim->{width} = 162.56mm

The class name for the attribute objects is ‘Attr’ - the unfortunate truncation
of the class name derives from the W3C DOM spec [https://www.w3.org/TR/DOM-Level-3-Core/core.html#ID-637646024]. The
reference documentation is at: XML::LibXML::Attr [https://metacpan.org/pod/XML::LibXML::Attr]. Some additional methods are
inherited from the Node class but not all the Node methods work with Attr
objects (once again due to behaviour specified by the W3C DOM).

You probably don't need this object interface for attributes at all.
The previous example showed how to access attributes directly via
the Element object.

my $book = $dom->documentElement;
my($dim) = $book->getChildrenByTagName('dimensions');
my($width_attr) = $dim->getAttributeNode('width');

say '$width_attr is a ', ref($width_attr);
say '$width_attr->nodeName: ', $width_attr->nodeName;
say '$width_attr->value: ', $width_attr->value;
say '$width_attr as a string: ', $width_attr;

Output:

$width_attr is a XML::LibXML::Attr
$width_attr->nodeName: width
$width_attr->value: 162.56mm
$width_attr as a string: width="162.56mm"

‘NodeList’ objects

The ‘NodeList’ object is a part of the DOM that makes sense in DOM
implementations for other languages (e.g.: Java) but doesn’t make much sense in
Perl. Methods such as childNodes() or findnodes() that may need to
return multiple nodes, return a ‘NodeList’ object which contains the matching
nodes and allows the caller to iterate through the result set:

my $result = $book->childNodes;
say '$result is a ', ref($result);
my $i = 1;
foreach my $i (1..$result->size) {
 my $node = $result->get_node($i);
 say $node->nodeName if $node->nodeType == XML_ELEMENT_NODE;
}

Output:

$result is a XML::LibXML::NodeList
title
authors
isbn
dimensions

But things don’t need to be that complicated in Perl - if a method needs to
return a list of values then it can just return a list of values. So the Perl
bindings for DOM methods that would return a NodeList check the calling
context. If called in a scalar context, they return a NodeList object (as
above) but in a list context they just return the list of values - much
simpler:

foreach my $node ($book->childNodes) {
 say $node->nodeName if $node->nodeType == XML_ELEMENT_NODE;
}

When you execute a search that you expect should match exactly one node, take
care to still use list context:

my($dim) = $book->findnodes('./dimensions');
say '$dim is a ', ref($dim);
say 'Page count: ', $dim->{pages};

Output:

$dim is a XML::LibXML::Element
Page count: 96

In this example, the assignment my($dim) = ... uses parentheses to force
list context, so findnodes() will return a list of Element nodes and the
first will be assigned to $dim. Without the parentheses, a NodeList would
be assigned to $dim.

If for some reason you find yourself with a NodeList object you can extract
the contents as a simple list with $result->get_nodelist.

The NodeList object does implement the to_literal() method, which returns
the text content of all the nodes, concatenated together as a single string.
If you need a list of individual string values, you can use
$result->to_literal_list():

say 'Authors: ', join ', ', $book->findnodes('.//author')->to_literal_list;

Output:

Authors: Gerry Bucsis, Barbara Somerville

Modifying the DOM

If you wish to modify the DOM, you can create new nodes and add them into the
node hierarchy in the appropriate place. You can also modify, move and delete
existing nodes. Let’s start with a simple XML document:

my $xml = q{
<record>
 <event>Men's 100m</event>
</record>
};
my $dom = XML::LibXML->load_xml(string => $xml);

Navigate to the <event> element; change its text content; add an attribute
and print out the resulting XML:

my $record = $dom->documentElement;
my($event) = $record->getChildrenByTagName('event');
my $text = $event->firstChild;
$text->setData("Men's 100 metres");
$event->{type} = 'sprint';
say $dom->toString;

Output:

<?xml version="1.0"?>
<record>
 <event type="sprint">Men's 100 metres</event>
</record>

You can use $dom->createElement to create a new element and then add it to
an existing node’s list of child nodes. You can append it to the end of the
list of children or insert it before/after a specific existing child:

my $country = $dom->createElement('country');
$country->appendText('Jamaica');
$record->appendChild($country);

my $athlete = $dom->createElement('athlete');
$athlete->appendText('Usain Bolt');
$record->insertBefore($athlete, $country);

say $dom->toString;

Output:

<?xml version="1.0"?>
<record>
 <event type="sprint">Men's 100 metres</event>
<athlete>Usain Bolt</athlete><country>Jamaica</country></record>

Unfortunately that output is probably messier than you were expecting. To get
nicely indented XML output, you’d need to create text nodes containing a
newline and the appropriate number of spaces for indentation; and then add
those text nodes in before each new element. Or, an easier way would be to
pass the numeric value 1 to the toString() method as a flag indicating
that you’d like the output auto-indented:

say $dom->toString(1);

Output:

<?xml version="1.0"?>
<record>
 <event type="sprint">Men's 100 metres</event>
<athlete>Usain Bolt</athlete><country>Jamaica</country></record>

But sadly that didn’t seem to work. The libxml library won’t add
indentation to ‘mixed content’ - an element whose list of child nodes
contains a mixture of both Element nodes and Text nodes. In this case the
<record> element contains mixed content (there’s a whitespace text node
before the <event> and another after it) so libxml does not try to
indent its contents.

If we strip out those extra text nodes then libxml will add indenting:

foreach my $node ($record->childNodes()) {
 $record->removeChild($node) if $node->nodeType != XML_ELEMENT_NODE;
}

Output:

<?xml version="1.0"?>
<record>
 <event type="sprint">Men's 100 metres</event>
 <athlete>Usain Bolt</athlete>
 <country>Jamaica</country>
</record>

While that did work, it required some rather specific knowledge of the document
structure. We were relying on knowing that all the text children of the
<record> element were whitespace-only and could be discarded. Here’s a
more generic approach which searches recursively through the document and
deletes every text node that contains only whitespace:

foreach ($dom->findnodes('//text()')) {
 $_->parentNode->removeChild($_) unless /\S/;
}

That code is a little tricky so some explanation is probably in order:

	The loop does not declare a loop variable, so $_ is used implicitly.

	The trailing unless clause runs a regex comparison against $_
which implicitly calls toString() on the Text node.

	unless /\S/ is a double negative which means “unless the text contains
a non-whitespace character”.

	the removeChild() method needs to be called on the parent of the node
we’re removing, so if the Text node is whitespace-only then we need to
use parentNode().

Of course an even simpler solution in this case would have been to turn on the
no_blanks option (described earlier) when parsing the initial XML document.

Another handy method for adding to the DOM is appendWellBalancedChunk().
This method takes a string containing a fragment of XML. It must be well
balanced - each opening tag must have a matching closing tag and elements must
be properly nested. The XML fragment is parsed to create a
XML::LibXML::DocumentFragment [https://metacpan.org/pod/XML::LibXML::DocumentFragment] which is then
appended to the target element:

$record->appendWellBalancedChunk(
 '<time>9.58s</time><date>2009-08-16</date><location>Berlin, Germany</location>'
);

Output:

<?xml version="1.0"?>
<record>
 <event type="sprint">Men's 100 metres</event>
 <athlete>Usain Bolt</athlete>
 <country>Jamaica</country>
 <time>9.58s</time>
 <date>2009-08-16</date>
 <location>Berlin, Germany</location>
</record>

One ‘gotcha’ with the appendWellBalancedChunk() method is that the XML
parsing phase expects a string of bytes. So if you have a Perl string that
might contain non-ASCII characters, you first need to encode the character
string to a byte string in UTF-8 and then pass the byte string to
appendWellBalancedChunk():

my $byte_string = Encode::encode_utf8($perl_string);
$record->appendWellBalancedChunk($byte_string, 'UTF-8');

Creating a new Document

You can create a document from scratch by calling
XML::LibXML::Document->new() rather than parsing from an existing document.
Then use the methods discussed above to add elements and text content:

#!/usr/bin/perl

use 5.010;
use strict;
use warnings;
use autodie;

use XML::LibXML;

my $dom = XML::LibXML::Document->new('1.0', 'UTF-8');
my $title = $dom->createElement('title');
$title->appendText("Caf\x{e9} lunch: \x{20ac}12.50");
$dom->setDocumentElement($title);

my $filename = 'temp-utf8.xml';
open my $out, '>:raw', $filename;

In this example, the document encoding was declared as UTF-8 when the Document
object was created. Text content was added by calling appendText() and
passing it a normal Perl character string - which happened to contain some
non-ASCII characters. When opening the file for output it is not necessary to
use an encoding layer since the output from libxml will already be encoded
as utf-8 bytes.

The file contents look like this:

<?xml version="1.0" encoding="UTF-8"?>
<title>Café lunch: €12.50</title>

If we hex-dump the file we can see the e-acute character [http://www.mclean.net.nz/ucf/?c=U+00E9] was written out as the 2-byte UTF-8
sequence C3 A9 and the euro symbol [http://www.mclean.net.nz/ucf/?c=U+20AC] was written as a 3-byte UTF-8
sequence: E2 82 AC:

00000000: 3c3f 786d 6c20 7665 7273 696f 6e3d 2231 <?xml version="1
00000010: 2e30 2220 656e 636f 6469 6e67 3d22 5554 .0" encoding="UT
00000020: 462d 3822 3f3e 0a3c 7469 746c 653e 4361 F-8"?>.<title>Ca
00000030: 66c3 a920 6c75 6e63 683a 20e2 82ac 3132 f.. lunch: ...12
00000040: 2e35 303c 2f74 6974 6c65 3e0a .50</title>.

To output the document in a different encoding all you need to do is change the
second parameter passed to new() when creating the Document object. No
other code changes are required:

my $dom = XML::LibXML::Document->new('1.0', 'ISO8859-1');

This time when hex-dumping the file we can see the e-acute character was
written out as the single byte E9 and the euro symbol which cannot be
represented directly in Latin-1 was written in numeric character entity form
€:

00000000: 3c3f 786d 6c20 7665 7273 696f 6e3d 2231 <?xml version="1
00000010: 2e30 2220 656e 636f 6469 6e67 3d22 4953 .0" encoding="IS
00000020: 4f38 3835 392d 3122 3f3e 0a3c 7469 746c O8859-1"?>.<titl
00000030: 653e 4361 66e9 206c 756e 6368 3a20 2623 e>Caf. lunch: &#
00000040: 3833 3634 3b31 322e 3530 3c2f 7469 746c 8364;12.50</titl
00000050: 653e 0a e>.

If you’re generating XML from scratch then creating and assembling DOM nodes is
very fiddly and XML::LibXML might not be the best tool for the job.
XML::Generator [https://metacpan.org/pod/XML::Generator] is an excellent
module for generating XML - especially if you need to deal with namespaces.

 Copyright 2016-2018, Grant McLean.
 Last updated on 2020-01-29.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Perl XML::LibXML by Example documentation

Working with XML Namespaces

Using the findnodes() method as described in the
basic examples section doesn’t work when the XML document
uses ‘namespaces’. This section describes the extra steps you need to take
to work with namespaces in XML.

XML ‘namespaces’ allow you to build documents using elements from more than one
vocabulary. For example one XML document might include both SVG elements to
describe a drawing, as well as Dublin Core elements to define metadata about
the drawing. The two different vocabularies are defined by separate bodies -
the W3C [https://www.w3.org/TR/SVG/] and the DCMI [http://dublincore.org/specifications/] respectively. Associating each
element in your document with a namespace allows a processor to distinguish
elements that use the same element names.

The scripts in this section will use the SVG document:
xml-libxml.svg. Which starts like this:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg
 xmlns="http://www.w3.org/2000/svg"
 xmlns:svg="http://www.w3.org/2000/svg"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:cc="http://creativecommons.org/ns#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
 xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
 width="1031.3961"
 height="278.02112"
 id="svg2"
 sodipodi:version="0.32"
 inkscape:version="0.48.4 r9939"
 sodipodi:docname="xml-libxml.svg"
 inkscape:output_extension="org.inkscape.output.svg.inkscape"
 version="1.0"
 inkscape:export-filename="/home/grant/Desktop/xml-libxml.png"
 inkscape:export-xdpi="79.860001"
 inkscape:export-ydpi="79.860001">

Because the top-level <svg> element uses
xmlns="http://www.w3.org/2000/svg" to declare a default namespace ,
every other element will be in that namespace unless the element name includes
a prefix for a different namespace, or unless an element declares a different
default namespace for itself and its children.

The first child element in the document is a <title> element with no
namespace prefix, so it is associated with the default namespace URI:
http://www.w3.org/2000/svg.

 <title id="title5798">Example SVG File</title>

A later section of the document includes a <title> element with the dc:
namespace prefix, so it is associated with the URI:
http://purl.org/dc/elements/1.1/.

 <dc:title>XML::LibXML Logo</dc:title>

You can confirm using the XPath sandbox that the XPath expression //title
does not match either of the <title> elements in the test document:

//titleTry it!
You can also use the following Perl code to confirm that findnodes() does
not return any matches for the XPath expression //title:

my $match_count = $dom->findnodes('//title')->size;
say "XPath: //title Matching node count: $match_count";

Output:

XPath: //title Matching node count: 0

When an element in a document is associated with a namespace URI it will only
match an XPath expression that includes a prefix that is also associated with
the same namespace URI. However it’s important to stress that it’s not the
prefix that is being matched, but the URI associated with the prefix.

Using the XPath sandbox, you can confirm that if we register the ‘Dublin Core’
namespace URI with the prefix dc, the XPath expression //dc:title will
match the <title> element in the <metadata> section:

//dc:titleTry it!
However if we register the same URI with the prefix dublin instead then
we can match the same element using the dublin prefix in our XPath:

//dublin:titleTry it!
In order to associate namespace prefixes in XPath expressions with namespace
URIs, we need to use an XML::LibXML::XPathContext [https://metacpan.org/pod/XML::LibXML::XPathContext] object. This is a
multi-step process:

	create an XPathContext object associated with the document you want to search

	register a prefix and associated URI for each namespace you want to include
in your query

	call the findnodes() method on the XPathContext object rather than
directly on the DOM object

use XML::LibXML;
use XML::LibXML::XPathContext;

my $filename = 'xml-libxml.svg';
my $dom = XML::LibXML->load_xml(location => $filename);

my $xpc = XML::LibXML::XPathContext->new($dom);
$xpc->registerNs('vg', 'http://www.w3.org/2000/svg');
$xpc->registerNs('dub', 'http://purl.org/dc/elements/1.1/');

my($match1) = $xpc->findnodes('//vg:title');
say 'XPath: //vg:title Matched: ', $match1;

my($match2) = $xpc->findnodes('//dub:title');
say 'XPath: //dub:title Matched: ', $match2;

Output:

XPath: //vg:title Matched: <title id="title5798">Example SVG File</title>
XPath: //dub:title Matched: <dc:title>XML::LibXML Logo</dc:title>

You’ll recall from earlier examples that you can search within a node by
calling findnodes() on the element node (rather than the document) and
using an XPath expression like ./child where the dot refers to the
context node. However when you’re dealing with namespaces that won’t work,
because you need to call findnodes() on the XPathContext object. The
solution is to pass findnodes() a second argument, after the XPath
expression. The additional argument is the element to use as a context node:

use XML::LibXML;
use XML::LibXML::XPathContext;

my $filename = 'xml-libxml.svg';
my $dom = XML::LibXML->load_xml(location => $filename, no_blanks => 1);

my $xpc = XML::LibXML::XPathContext->new($dom);
$xpc->registerNs('svg', 'http://www.w3.org/2000/svg');
$xpc->registerNs('dc', 'http://purl.org/dc/elements/1.1/');

my($metadata) = $xpc->findnodes('//svg:metadata') or die "No metadata";

foreach my $el ($xpc->findnodes('.//dc:*', $metadata)) {
 my $name = $el->localname;
 my $value = $el->to_literal or next;
 say "$name=$value";
}

Output:

format=image/svg+xml
title=XML::LibXML Logo
creator=Grant McLean
date=2016-03-26
subject=perlxmllibxml
description=An SVG file created as an example for parsing XML with namespaces.

One small feature of that script which is worth noting is the use of
$el->localname to get the name of the element without the namespace
prefix. The more commonly used $el->nodeName method does include the
namespace prefix as it appears in the document.

 Copyright 2016-2018, Grant McLean.
 Last updated on 2020-01-29.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Perl XML::LibXML by Example documentation

Working With Large Documents

The examples so far have all started by creating a data structure called a
Document Object Model to represent the whole XML document. Using
XPath expressions to navigate the DOM can be both powerful and
convenient, but the cost in memory consumption can be quite high. For example,
parsing a 50MB XML file into a DOM might need 500MB of memory.

If you routinely work with very large XML documents, you might find that
XML::LibXML‘s DOM parser wants to consume more memory than your system has
installed. In such cases, you can instead use the ‘pull parser’ API which
is accessed via the XML::LibXML::Reader interface.

The Reader Loop

To gain a better understanding of how the reader API is used, let’s start by
seeing what happens when we parse this very simple XML document:

	1
2
3
4

	<country code="IE">
 <name>Ireland</name>
 <population>4761657</population>
</country>

This script loads the reader API and parses the XML file:

#!/usr/bin/perl

use 5.010;
use strict;
use warnings;

use XML::LibXML::Reader;

my $filename = 'country.xml';

my $reader = XML::LibXML::Reader->new(location => $filename)
 or die "cannot read file '$filename': $!\n";

while($reader->read) {
 printf(
 "Node type: %2u Depth: %2u Name: %s\n",
 $reader->nodeType,
 $reader->depth,
 $reader->name
);
}

and produces the following output:

Node type: 1 Depth: 0 Name: country
Node type: 14 Depth: 1 Name: #text
Node type: 1 Depth: 1 Name: name
Node type: 3 Depth: 2 Name: #text
Node type: 15 Depth: 1 Name: name
Node type: 14 Depth: 1 Name: #text
Node type: 1 Depth: 1 Name: population
Node type: 3 Depth: 2 Name: #text
Node type: 15 Depth: 1 Name: population
Node type: 14 Depth: 1 Name: #text
Node type: 15 Depth: 0 Name: country

We can see from the output that the while loop executes 11 times. As the
XML document is parsed, the $reader object acts as a cursor advancing
through the document. Each time a ‘node’ has been parsed, the read
method returns to allow the state of the parse and the current node to be
interrogated.

To make sense of it we really need to turn those ‘Node Type’ numbers into
something a bit more readable. The XML::LibXML::Reader module exports a
set of constants for this purpose. Here’s a modified version of the script:

#!/usr/bin/perl

use 5.010;
use strict;
use warnings;

use XML::LibXML::Reader;

my $filename = 'country.xml';

my $reader = XML::LibXML::Reader->new(location => $filename)
 or die "cannot read file '$filename': $!\n";

my %type_name = (
 &XML_READER_TYPE_ELEMENT => 'ELEMENT',
 &XML_READER_TYPE_ATTRIBUTE => 'ATTRIBUTE',
 &XML_READER_TYPE_TEXT => 'TEXT',
 &XML_READER_TYPE_CDATA => 'CDATA',
 &XML_READER_TYPE_ENTITY_REFERENCE => 'ENTITY_REFERENCE',
 &XML_READER_TYPE_ENTITY => 'ENTITY',
 &XML_READER_TYPE_PROCESSING_INSTRUCTION => 'PROCESSING_INSTRUCTION',
 &XML_READER_TYPE_COMMENT => 'COMMENT',
 &XML_READER_TYPE_DOCUMENT => 'DOCUMENT',
 &XML_READER_TYPE_DOCUMENT_TYPE => 'DOCUMENT_TYPE',
 &XML_READER_TYPE_DOCUMENT_FRAGMENT => 'DOCUMENT_FRAGMENT',
 &XML_READER_TYPE_NOTATION => 'NOTATION',
 &XML_READER_TYPE_WHITESPACE => 'WHITESPACE',
 &XML_READER_TYPE_SIGNIFICANT_WHITESPACE => 'SIGNIFICANT_WHITESPACE',
 &XML_READER_TYPE_END_ELEMENT => 'END_ELEMENT',
);

say " Step | Node Type | Depth | Name";
say "------+-------------------------+-------+-------";

my $step = 1;
while($reader->read) {
 printf(
 " %3u | %-22s | %4u | %s\n",
 $step++,
 $type_name{$reader->nodeType},
 $reader->depth,
 $reader->name
);
}

that produces the following tidier output:

 Step | Node Type | Depth | Name
------+-------------------------+-------+-------
 1 | ELEMENT | 0 | country
 2 | SIGNIFICANT_WHITESPACE | 1 | #text
 3 | ELEMENT | 1 | name
 4 | TEXT | 2 | #text
 5 | END_ELEMENT | 1 | name
 6 | SIGNIFICANT_WHITESPACE | 1 | #text
 7 | ELEMENT | 1 | population
 8 | TEXT | 2 | #text
 9 | END_ELEMENT | 1 | population
 10 | SIGNIFICANT_WHITESPACE | 1 | #text
 11 | END_ELEMENT | 0 | country

from the same XML :

	1
2
3
4

	<country code="IE">
 <name>Ireland</name>
 <population>4761657</population>
</country>

Some things to note:

	At step 1, when the read method returns for the first time, the cursor
has advanced to the closing ‘>’ of the <country> start tag. We could
retrieve an attribute value by calling $reader->getAttribute('code') but
we can’t examine child elements or text nodes because the parser has not seen
them yet.

	At step 2, the parser has processed a chunk of text and found that it
contains only whitespace (side note: all whitespace is considered to be
‘significant’ unless a DTD is loaded and defines which whitespace is
insignificant). Although we can get access to the text, the $reader
object can no longer tell us that it is a child of a <country> element -
the parser has discarded that information already.

	At step 3, the parser can tell us the current node is a <name> element,
and the depth method can tell us that there is one ancestor element.
However there is no way to determine the name of the parent element.

	At step 4 a text node has been identified and we can call $reader->value
to get the text string "Ireland", but the parser can no longer tell us
the name of the element it belongs to.

	At step 5 we have reached the end of the <name> element, but we no longer
have access to the text it contained.

But now you surely get the idea - the XML::LibXML::Reader API is able to
keep its memory requirements low by discarding data from one parse step before
proceeding to the next. The vastly lowered memory demands come at the cost of
significantly lowered convenience for the programmer. However, as we’ll see in
the next section, there is a middle ground that can provide the convenience of
the DOM API combined with the reduced memory usage of the Reader API.

Bring Back the DOM

Huge XML documents usually contain a long list of similar elements. For
example Wikipedia make XML ‘dumps’ available
for download [https://dumps.wikimedia.org/enwiki/latest/].

At the time of writing, the enwiki-latest-abstract1.xml.gz file was about
100MB in size - about 800MB uncompressed. However it contained information
summarising over half a million Wikipedia articles. So whilst the file is very
large, the <doc> elements describing each article are, on average, less
than 1.5KB. The following extract is reformatted for clarity to illustrate
the file structure:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	<feed>
 <doc>
 <title>Wikipedia: Anarchism</title>
 <url>https://en.wikipedia.org/wiki/Anarchism</url>
 <abstract>Anarchism is a political philosophy that advocates
 self-governed societies based on voluntary institutions.
 These are often described as stateless societies …</abstract>
 <links>
 <sublink linktype="nav">
 <anchor>History</anchor>
 <link>https://en.wikipedia.org/wiki/Anarchism#History</link>
 </sublink>
 <sublink linktype="nav">
 <anchor>Origins</anchor>
 <link>https://en.wikipedia.org/wiki/Anarchism#Origins</link>
 </sublink>
 <!-- more sublink elements -->
 </links>
 </doc>
 <doc>
 <title>Wikipedia: Autism</title>
 <url>https://en.wikipedia.org/wiki/Autism</url>
 <abstract>…</abstract>
 <links>
 <!-- sublink elements -->
 </links>
 </doc>
 <!-- (many) more doc elements -->
</feed>

To process this file, we can use the Reader API to locate each <doc>
element and then parse that element and all its children into a DOM fragment.
We can then use the familiar and convenient XPath tools and DOM methods to
process each fragment.

Another useful technique when working with large files is to leave the files in
their compressed form and use a Perl IO layer to decompress them on the fly.
You can achieve this using the PerlIO::gzip [https://metacpan.org/pod/PerlIO::gzip] module from CPAN.

To illustrate these techniques, the following script uses the Reader API to
pick out each <doc> element and slurp it into a DOM fragment. Then XPath
queries are used to examine the child nodes and determine if the <doc> is
‘interesting’ - does it have a sub-heading that contains variant of the word
“controversy”? Uninteresting elements are skipped, interesting elements are
reported in summary form: article title, interesting subheading, URL.

#!/usr/bin/perl

use 5.010;
use strict;
use warnings;
use autodie;

use PerlIO::gzip;
use XML::LibXML::Reader;

binmode(STDOUT, ':utf8');

my $filename = 'enwiki-latest-abstract1-abridged.xml.gz';
open my $fh, '<:gzip', $filename;

my $reader = XML::LibXML::Reader->new(IO => $fh);

my $controversy_xpath = q{./links/sublink[contains(./anchor, 'Controvers')]};

while($reader->read) {
 next unless $reader->nodeType == XML_READER_TYPE_ELEMENT;
 next unless $reader->name eq 'doc';
 my $doc = $reader->copyCurrentNode(1);
 if(my($target) = $doc->findnodes($controversy_xpath)) {
 say 'Title: ', $doc->findvalue('./title');
 say ' ', $target->findvalue('./anchor');
 say ' ', $target->findvalue('./link');
 say '';
 }
 $reader->next;
}

In the script above, $doc is a DOM fragment that can be queried and
manipulated using the DOM methods described in earlier chapters.

At the start of the while loop, a couple of conditional next statements
allow skipping quickly to the start of the next <doc> element. Depending
on the document you’re dealing with, you might need to also use the depth
method to avoid deeply nested elements that also happened to be named “doc”.

The call to $reader->copyCurrentNode(1) creates a DOM fragment from the
current element. The 1 passed as an argument is a boolean flag that causes
all child elements to be included.

In order to build the DOM fragment, the $reader has to process all content
up to the matching XML_READER_TYPE_END_ELEMENT node. You may be surprised
to learn that this does not advance the cursor. So the next call to
$reader->read will advance to the first child node of the current
<doc>. In our case, that would be a waste of time - there is no need to
use the Reader API to re-process the child nodes that we already processed with
the DOM API. Therefore after processing a <doc>, we call $reader->next
to skip directly to the node following the matching </doc> end tag. When
this script was used to process the full-sized file, adding this call to
next reduced the run time by almost 50%.

When processing files with millions of elements, a small optimisation in the
main loop can make a noticeable difference to the run time. For example,
building the DOM fragment is a relatively expensive operation. The call to
$reader->copyCurrentNode(1) is equivalent to:

my $xml = $reader->readOuterXml;
my $doc = XML::LibXML->load_xml(string => $xml);

As an optimisation, we can avoid the step of building the DOM fragment if a
quick regex check of the source XML tells us that it doesn’t contain the word
we’re going to look for with the XPath query. This rewritten main loop shave
about 20% off the run time:

my $controversy_xpath = q{/doc/links/sublink[contains(./anchor, 'Controvers')]};

while($reader->read) {
 next unless $reader->nodeType == XML_READER_TYPE_ELEMENT;
 next unless $reader->name eq 'doc';
 my $xml = $reader->readOuterXml;
 if($xml =~ /Controvers/) {
 my $doc = XML::LibXML->load_xml(string => $xml);
 if(my($target) = $doc->findnodes($controversy_xpath)) {
 say 'Title: ', $doc->findvalue('/doc/title');
 say ' ', $target->findvalue('./anchor');
 say ' ', $target->findvalue('./link');
 say '';
 }
 }
 $reader->next;
}

Error Handling

Error handling is a little different with the Reader API vs the DOM API. The
DOM API will parse the whole document and throw an exception immediately if it
encounters and error in the XML. So if there’s an error you won’t get a DOM.

The Reader API on the other hand will start returning nodes to your script via
$reader->read as soon as the parsing starts [1]. If there is an error in your
document, you won’t know until your parser reaches the error - then you’ll get
the exception.

You need to bear this in mind when parsing with the Reader API. For example if
you were reading elements to populate records in a database, you might want to
wrap all the database INSERT statement in a transaction so that you can roll
them all back if you encounter a parse error.

Another useful technique is to parse the document twice, once to check the XML
is well-formed and once to actually process it. The finish method provides
a quick way to parse from the current position to the end of the document:

 my $reader = XML::LibXML::Reader->new(IO => $fh);
 $reader->finish;

You’ll then need to reopen the file and create a new Reader object for the
second parse.

In some applications you might scan through the file looking for a specific
section. Once the target has been located and the required information
extracted, you might not need to look at any more elements. However as we’ve
seen, you should call finish to ensure there are no errors in the rest of
the XML.

Working With Patterns

Our sample script is identifying elements at the top of the main loop by
examining the node type and the node name:

while($reader->read) {
 next unless $reader->nodeType == XML_READER_TYPE_ELEMENT;
 next unless $reader->name eq 'doc';

Although these are simple checks, they do still involve two method calls and
passing scalar values across the XS boundary between libxml and the Perl
runtime. An alternative approach is to compile a ‘pattern’ (essentially a
simplified subset of XPath) using XML::LibXML::Pattern [https://metacpan.org/pod/XML::LibXML::Pattern] and run a complex set of
checks with a single method call:

my $doc_pattern = XML::LibXML::Pattern->new('/feed/doc');
while($reader->read) {
 next unless $reader->matchesPattern($doc_pattern);

In our example, the <doc> elements that we’re interested in are all
adjacent, so when we finish processing one, the very next element is another
<doc>. If your document is not structured this way, you might find it
useful to skip over large sections of document to find the next element that
matches a pattern, like this:

$reader->nextPatternMatch($pattern);

You can also use patterns with the preservePattern method to create a DOM
subset of a larger document. For example:

my $filename = 'enwiki-latest-abstract1-structure.xml';

my $reader = XML::LibXML::Reader->new(location => $filename);
$reader->preservePattern('/feed/doc/title');
$reader->finish;

say $reader->document->toString(1);

Which will produce this output:

<?xml version="1.0"?>
<feed>
 <doc>
 <title>Wikipedia: Anarchism</title>
 </doc>
 <doc>
 <title>Wikipedia: Autism</title>
 </doc>
</feed>

Note, this technique does construct the DOM in memory and then serialise it at
the end, so if you have a huge document and many nodes match the pattern then
you will consume a large amount of memory.

Footnotes

	[1]	In practice, the Reader API will read the XML in chunks and check each
chunk is well-formed before it starts delivering node events. This means
that a short document with an error may trigger an exception before any
nodes have been delivered.

 Copyright 2016-2018, Grant McLean.
 Last updated on 2020-01-29.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Perl XML::LibXML by Example documentation

Working with HTML

If you ever need to extract text and data from HTML documents, the libxml
parser and DOM provide very useful tools. You might imagine that libxml
would only work with XHTML and even then only strictly well-formed documents.
In fact, the parser has an HTML mode that handles unclosed tags like
and
 and is even able to recover from parse errors caused by poorly
formed HTML.

Let’s start with this mess of HTML tag soup:

<html><head><title>Example (Untidy) HTML Doc</title></head>
<body><p>Here's a paragraph with <i>poorly nested</i>
tags. Followed by a list of items — with unclosed tags</p>
redorangeyellow</body></html>

To read the file in, you’d use the load_html() method rather than
load_xml(). You’ll almost certainly want to use the recover => 1
option to tell the parser to try to recover from parse errors and carry on to
produce a DOM.

#!/usr/bin/perl

use 5.010;
use strict;
use warnings;

use XML::LibXML;

my $filename = 'untidy.html';

my $dom = XML::LibXML->load_html(
 location => $filename,
 recover => 1,
);

say $dom->toStringHTML();

When the DOM is serialised with toStringHTML(), some rudimentary formatting
is applied automatically. Unfortunately there is no option to add indenting
to the HTML output:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/TR/REC-html40/loose.dtd">
<html>
<head><title>Example (Untidy) HTML Doc</title></head>
<body>
<p>Here's a paragraph with <i>poorly nested</i>
tags. Followed by a list of items — with unclosed tags</p>

red
orange
yellow

</body>
</html>

While the document is being parsed, you’ll see messages like this on STDERR:

untidy.html:2: HTML parser error : Opening and ending tag mismatch: i and b
<body><p>Here's a paragraph with <i>poorly nested</i>
 ^
untidy.html:2: HTML parser error : Unexpected end tag : b
<body><p>Here's a paragraph with <i>poorly nested</i>
 ^

You can turn off the error output with the suppress_errors option:

my $dom = XML::LibXML->load_html(
 location => $filename,
 recover => 1,
 suppress_errors => 1,
);

That option doesn’t seem to work with all versions of XML::LibXML so you
may want to use a routine like this that sends STDERR to /dev/null during
parsing, but still allows other output to STDERR when the parse function
returns:

use File::Spec;

sub parse_html_file {
 my($filename) = @_;

 local(*STDERR);
 open STDERR, '>>', File::Spec->devnull();
 return XML::LibXML->load_html(
 location => $filename,
 recover => 1,
 suppress_errors => 1,
);
};

Querying HTML with XPath

The main tool you’ll use for extracting data from HTML is the findnodes()
method that was introduced in A Basic Example and XPath Expressions. For these
examples, the source HTML comes from the CSS Zen Garden Project [http://csszengarden.com/] and is in the file css-zen-garden.html.

This script locates every <h3> element inside the <div> with an id
attribute value of "zen-supporting":

my $filename = 'css-zen-garden.html';

my $dom = XML::LibXML->load_html(
 location => $filename,
 recover => 1,
 suppress_errors => 1,
);

my $xpath = '//div[@id="zen-supporting"]//h3';
say "$_" foreach $dom->findnodes($xpath)->to_literal_list;

Output:

So What is This About?
Participation
Benefits
Requirements

For a more complex example, the next script iterates through each in
the “Select a Design” section and extracts three items of information for each:
the name of the design, the name of the designer, and a link to view the
design. Once the information has been collected, it is dumped out in JSON
format:

use XML::LibXML;
use URI::URL;
use JSON qw(to_json);

my $base_url = 'http://csszengarden.com/';
my $filename = 'css-zen-garden.html';

my $dom = XML::LibXML->load_html(
 location => $filename,
 recover => 1,
 suppress_errors => 1,
);

my @designs;
my $xpath = '//div[@id="design-selection"]//li';
foreach my $design ($dom->findnodes($xpath)) {
 my($name, $designer) = $design->findnodes('./a')->to_literal_list;
 my($url) = $design->findnodes('./a/@href')->to_literal_list;
 $url = URI::URL->new($url, $base_url)->abs;
 push @designs, {
 name => $name,
 designer => $designer,
 url => "$url",
 };
}

say to_json(\@designs, {pretty => 1});

Output:

[
 {
 "designer" : "Andrew Lohman",
 "url" : "http://csszengarden.com/221/",
 "name" : "Mid Century Modern"
 },
 {
 "name" : "Garments",
 "url" : "http://csszengarden.com/220/",
 "designer" : "Dan Mall"
 },
 {
 "name" : "Steel",
 "designer" : "Steffen Knoeller",
 "url" : "http://csszengarden.com/219/"
 },
 {
 "designer" : "Trent Walton",
 "url" : "http://csszengarden.com/218/",
 "name" : "Apothecary"
 },
 {
 "name" : "Screen Filler",
 "designer" : "Elliot Jay Stocks",
 "url" : "http://csszengarden.com/217/"
 },
 {
 "name" : "Fountain Kiss",
 "designer" : "Jeremy Carlson",
 "url" : "http://csszengarden.com/216/"
 },
 {
 "name" : "A Robot Named Jimmy",
 "designer" : "meltmedia",
 "url" : "http://csszengarden.com/215/"
 },
 {
 "name" : "Verde Moderna",
 "designer" : "Dave Shea",
 "url" : "http://csszengarden.com/214/"
 }
]

In both these examples we were fortunate to be dealing with ‘semantic markup’
– where sections of the document could be readily identified using id
attributes. If there were no id attributes, we could change the XPath
expression to select using element text content instead:

my $xpath = '//h3[contains(.,"Select a Design")]/..//li';

This XPath expression first looks for an <h3> element that contains the
text 'Select a Design'. It then uses /.. to find that element’s
parent (a <div> in the example document) and then uses //li to find
all elements contained within the parent.

Another common problem is finding that although your XPath expressions do match
the content you want, they also match content you don’t want – for example
from a block of navigation links. In these cases you might identify a block of
uninteresting content using findnodes() and then use removeChild() to
remove that whole section from the DOM before running your main
XPath query. Because you’re only removing the nodes from the in-memory copy
of the document, the original source remains unchanged. This technique is
used in the spell-check script used
to find typos in this document.

Matching class names

An HTML element can have multiple classes applied to it by using a
space-separated list in the class attribute. Some care is needed to ensure
your XPath expressions always match one whole class name from the list. For
example, if you were trying to match elements with the class
member, you might try something like:

$xpath = '//li[contains(@class, "member")]';

which will match an element like this:

 <li class="member">Catherine Trenton

but it will also match an element like this:

 <li class="non-member">Daniel Ifflehirst

The most common way to solve the problem is to add an extra space to the
beginning and the end of the class attribute value like this: concat("
", @class, " ") and then add spaces around the classname we’re looking for:
' member '. Giving a expression like this:

$xpath = '//li[contains(concat(" ", @class, " "), " member ")]';

Using CSS-style selectors

The XPath expression in the last example is an effective way to select elements
by class name, but the syntax is very unwieldy compared to CSS selectors. For
example, the CSS selector to match elements with the class name member
would simply be: .member

Wouldn’t it be great if there was a way to provide a CSS selector and have it
converted into an XPath expression that you could pass to findnodes()?
Well it turns out that’s exactly what the HTML::Selector::XPath [https://metacpan.org/pod/HTML::Selector::XPath] module does:

use HTML::Selector::XPath qw(selector_to_xpath);

sub find_by_css {
 my($dom, $selector) = @_;
 my $xpath = selector_to_xpath($selector);
 return $dom->findnodes($xpath);
}

Some example inputs (“Selector”) and outputs (“XPath”):

Selector: #zen-supporting h3
XPath: //*[@id='zen-supporting']//h3

Selector: .designer-name
XPath: //*[contains(concat(' ', normalize-space(@class), ' '), ' designer-name ')]

Selector: .preamble abbr
XPath: //*[contains(concat(' ', normalize-space(@class), ' '), ' preamble ')]//abbr

Selector: .preamble h3, .requirements h3
XPath: //*[contains(concat(' ', normalize-space(@class), ' '), ' preamble ')]//h3 | //*[contains(concat(' ', normalize-space(@class), ' '), ' requirements ')]//h3

 Copyright 2016-2018, Grant McLean.
 Last updated on 2020-01-29.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 previous |

 	Perl XML::LibXML by Example documentation

Installing XML::LibXML

You can install the XML::LibXML module using standard tools like cpanm [https://metacpan.org/pod/distribution/App-cpanminus/bin/cpanm], but there
are a couple of factors to consider first. Because the module wraps a C
library, to install this way you must have a C compiler installed and you must
have already installed the libxml2 library along with its development
header files.

Note

Since version 2.0200, the XML::LibXML distribution uses a dependency on
Alien::Libxml2 to install the libxml2 library if your system does not
already have it. So if the easier install options listed below are not
suitable for your use case, you may be able to just use the normal CPAN
install process:

cpan install XML::LibXML

There may be easier install options for your platform.

Installing on Windows

Strawberry Perl

The most popular Perl distribution for Windows is Strawberry Perl [http://strawberryperl.com/], which happens to include XML::LibXML in the
base Perl installer. So if you have Strawberry Perl, you already have
XML::LibXML.

ActivePerl

Another popular Perl distribution for Windows is ActivePerl [http://www.activestate.com/activeperl/downloads] from ActiveState (who also
package Perl for Mac OS X, Linux and Solaris). ActivePerl includes a tool
called PPM (Perl Package Manager) for installing pre-built Perl modules. You
can use the PPM graphical user interface to search for the XML::LibXML package [http://code.activestate.com/ppm/search:XML::LibXML/] then click to select
and install it. A command-line interface is also available:

ppm install XML-LibXML

Installing on Linux

If you are using the system Perl binary, you can install a pre-compiled version
of XML::LibXML and the underlying libxml2 library from your distribution’s
package archive.

On systems using dpkg/apt (Debian, Ubuntu, Mint, etc.):

sudo apt-get install libxml-libxml-perl

On systems using rpm/yum (RedHat, CentOS, Fedora, etc.):

sudo yum install "perl(XML::LibXML)"

Manual installation

If for some reason you want to compile and install a version of XML::LibXML
directly from CPAN, you must first install both the libxml2 library and
the header files for linking against the library. The easiest way to do this
is to use your distribution’s packages. For example on Debian:

sudo apt-get install libxml2 libxml2-dev

You can test that the library is correctly installed and your PATH is set up
correctly with this command:

xml2-config --version

For more information about manual builds, refer to the README file in the
XML::LibXML distribution [https://metacpan.org/release/XML-LibXML].

Installing on Mac OS X

You can install the libxml2 library using homebrew:

brew install libxml2

If you do not have Homebrew, you can install it at the homebrew website [https://brew.sh/].

Once you have the libxml2 library installed, you can install the
XML::LibXML Perl module using standard tools such as cpan or cpanm.

 Copyright 2016-2018, Grant McLean.
 Last updated on 2020-01-29.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	Perl XML::LibXML by Example documentation

Index

 Copyright 2016-2018, Grant McLean.
 Last updated on 2020-01-29.
 Created using Sphinx 1.3.6.

 _static/minus.png

_images/dom-full.png
Document

Training Your Pet Ferret (o78-0-7641-4223-9 width="162.56mm")

height="195.58mm"

depth="10.16mm"

(Gerry Bucsis | (Barbara somerville)

_images/dom.png
Document

Training Your Pet Ferret (o78-0-7641-4223-9 width="162.56mm")

height="195.58mm"

depth="10.16mm"

(cerry Bucsis) (Barbara somerville)

_downloads/css-zen-garden.html

	
		
			CSS Zen Garden

			The Beauty of CSS Design

		

		
			A demonstration of what can be accomplished through CSS-based design. Select any style sheet from the list to load it into this page.

			Download the example html file and css file

		

		
			The Road to Enlightenment

			Littering a dark and dreary road lay the past relics of browser-specific tags, incompatible DOMs, broken CSS support, and abandoned browsers.

			We must clear the mind of the past. Web enlightenment has been achieved thanks to the tireless efforts of folk like the W3C, WaSP, and the major browser creators.

			The CSS Zen Garden invites you to relax and meditate on the important lessons of the masters. Begin to see with clarity. Learn to use the time-honored techniques in new and invigorating fashion. Become one with the web.

		

	

	
		
			So What is This About?

			There is a continuing need to show the power of CSS. The Zen Garden aims to excite, inspire, and encourage participation. To begin, view some of the existing designs in the list. Clicking on any one will load the style sheet into this very page. The HTML remains the same, the only thing that has changed is the external CSS file. Yes, really.

			CSS allows complete and total control over the style of a hypertext document. The only way this can be illustrated in a way that gets people excited is by demonstrating what it can truly be, once the reins are placed in the hands of those able to create beauty from structure. Designers and coders alike have contributed to the beauty of the web; we can always push it further.

		

		
			Participation

			Strong visual design has always been our focus. You are modifying this page, so strong CSS skills are necessary too, but the example files are commented well enough that even CSS novices can use them as starting points. Please see the CSS Resource Guide for advanced tutorials and tips on working with CSS.

			You may modify the style sheet in any way you wish, but not the HTML. This may seem daunting at first if you’ve never worked this way before, but follow the listed links to learn more, and use the sample files as a guide.

			Download the sample HTML and CSS to work on a copy locally. Once you have completed your masterpiece (and please, don’t submit half-finished work) upload your CSS file to a web server under your control. Send us a link to an archive of that file and all associated assets, and if we choose to use it we will download it and place it on our server.

		

		
			Benefits

			Why participate? For recognition, inspiration, and a resource we can all refer to showing people how amazing CSS really can be. This site serves as equal parts inspiration for those working on the web today, learning tool for those who will be tomorrow, and gallery of future techniques we can all look forward to.

		

		
			Requirements

			Where possible, we would like to see mostly CSS 1 & 2 usage. CSS 3 & 4 should be limited to widely-supported elements only, or strong fallbacks should be provided. The CSS Zen Garden is about functional, practical CSS and not the latest bleeding-edge tricks viewable by 2% of the browsing public. The only real requirement we have is that your CSS validates.

			Luckily, designing this way shows how well various browsers have implemented CSS by now. When sticking to the guidelines you should see fairly consistent results across most modern browsers. Due to the sheer number of user agents on the web these days — especially when you factor in mobile — pixel-perfect layouts may not be possible across every platform. That’s okay, but do test in as many as you can. Your design should work in at least IE9+ and the latest Chrome, Firefox, iOS and Android browsers (run by over 90% of the population).

			We ask that you submit original artwork. Please respect copyright laws. Please keep objectionable material to a minimum, and try to incorporate unique and interesting visual themes to your work. We’re well past the point of needing another garden-related design.

			This is a learning exercise as well as a demonstration. You retain full copyright on your graphics (with limited exceptions, see submission guidelines), but we ask you release your CSS under a Creative Commons license identical to the one on this site so that others may learn from your work.

			By Dave Shea. Bandwidth graciously donated by mediatemple. Now available: Zen Garden, the book.

		

		
			HTML
			CSS
			CC
			A11y
			GH
		

	

	
		

			
				Select a Design:

				
					
							
						Mid Century Modern by						Andrew Lohman
					

							
						Garments by						Dan Mall
					

							
						Steel by						Steffen Knoeller
					

							
						Apothecary by						Trent Walton
					

							
						Screen Filler by						Elliot Jay Stocks
					

							
						Fountain Kiss by						Jeremy Carlson
					

							
						A Robot Named Jimmy by						meltmedia
					

							
						Verde Moderna by						Dave Shea
					

					

				
			

			
				Archives:

				
					
								
							
								Next Designs ›
							
						

								
							
								View All Designs							
						

					

				
			

			
				Resources:

				
							
						
							View This Design’s CSS						
					

							
						
							CSS Resources						
					

							
						
							FAQ						
					

							
						
							Submit a Design						
					

							
						
							Translations						
					

				

			

		

	

_static/xpath-sandbox/xpath-sandbox.html

 XPath Sandbox

 		Back to tutorial

 Select one of the provided example files:

 Or, select one of your own files (UTF-8 encoding is recommended).

 Select a File

 Note: This file will only be opened locally and will not be uploaded
 to a server.

_static/comment-close.png

_static/metacpan-tiny.png

_static/down.png

_static/plus.png

_static/cover.jpg
Perl

XML:LibXML
By Example

By Grant McLean

_static/file.png

_static/up.png

_static/comment-bright.png

_static/cc-by-sa.png

_static/down-pressed.png

_static/up-pressed.png

_static/comment.png

_static/ajax-loader.gif

